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In many realistic fluid-dynamical simulations the specification of the boundary
conditions, the error sources, and the number of time steps to reach a steady state
are important practical considerations. In this paper we study these issues in the case
of the lattice-BGK model. The objective is to present a comprehensive overview of
some pitfalls and shortcomings of the lattice-BGK method and to introduce some
new ideas useful in practical simulations. We begin with an evaluation of the widely
used bounce-back boundary condition in staircase geometries by simulating flow in
an inclined tube. It is shown that the bounce-back scheme is first-order accurate in
space when the location of the non-slip wall is assumed to be at the boundary nodes.
Moreover, for a specific inclination angle of 45 degrees, the scheme is found to be
second-order accurate when the location of the non-slip velocity is fitted halfway
between the last fluid nodes and the first solid nodes. The error as a function of the
relaxation parameter is in that case qualitatively similar to that of flat walls. Next,
a comparison of simulations of fluid flow by means of pressure boundaries and by
means of body force is presented. A good agreement between these two boundary
conditions has been found in the creeping-flow regime. For higher Reynolds numbers
differences have been found that are probably caused by problems associated with
the pressure boundaries. Furthermore, two widely used 3D models, namelyD3Q15

and D3Q19, are analysed. It is shown that theD3Q15 model may induce artificial
checkerboard invariants due to the connectivity of the lattice. Finally, a new iterative
method, which significantly reduces the saturation time, is presented and validated
on different benchmark problems. c© 1999 Academic Press
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I. INTRODUCTION

The lattice-Boltzmann method [1–4] is a mesoscopic approach based on the kinetic
Boltzmann equation for simulating fluid flow. In this method fluid is modeled by particles
moving on a regular lattice. At each time step particles propagate to neighboring lattice points
and re-distribute their velocities in a local collision phase. This model has been successfully
used for simulating many complex fluid-dynamical problems, such as suspension flow,
multi-phase flow, and fluid flow in porous media, which are quite difficult to simulate by
conventional methods [3]. Moreover, the inherent locality of the update rules makes it ideal
for parallel computing [5].

During the past few years much progress has been made in the development of the lattice-
Boltzmann method. Different models for simulating a wide variety of physical systems have
been developed [1–3, 6–10, 12, 13], various ways of imposing boundary conditions have
been proposed [14–19], and lately several schemes based on non-uniform lattices have been
reported [21–23]. In this article we study some important aspects which are of practical
significance. We will focus our attention on the boundary conditions, the regularly used 3D
models, and the saturation time (that is, the number of time steps needed to reach a steady
state) of the model.

The actual specification of the boundary conditions in lattice-Boltzmann simulations has
attracted much attention. Previous studies show that the effect of the bounce-back rule,
which is widely used to model a solid wall, is certainly not trivial [15–17, 24]. We study
the behavior of this boundary condition for staircase boundaries. Furthermore, in many
lattice-Boltzmann simulations fluid is driven by a body force [25]. This approach is well
suited for periodic geometries. More sophisticated pressure- and velocity-boundaries have
been proposed by several authors to model the inlets and outlets of non-periodic systems
[26, 27]. We present a comparison of the body force and pressure boundaries in order to
gain more insight into the accuracy of these approaches.

In 3D lattice-Boltzmann simulations the regularly used models are theD3Q15 and the
D3Q19 model (hereD denotes the dimensionality of the problem andQ is the number
of bonds per lattice point) [9]. We will show that, in theD3Q15 model, there can appear
checkerboarding in the fluid momentum. In some cases this unphysical effect seems to be
suppressed by boundaries. We will also discuss in some detail the numerical accuracy of
these models.

As most numerical algorithms, the standard lattice-Boltzmann scheme also has potential
shortcomings. For instance, in many cases the number of time steps needed to reach the
steady state is very high. It can be argued that this is a direct consequence of the transient
nature of the scheme. Here, we will present a new technique, namely the Iterative Mo-
mentum Relaxation technique (IMR), which can significantly reduce the saturation time of
simulations driven by a body force.

In Section II we first review the basics of the lattice-Boltzmann method. In Section III we
discuss the bounce-back boundary condition and the accuracy of the body-force method.
In Section IV we study various 3D models and, especially, the checkerboard effect. Finally,
in Section V, we present the IMR technique.

II. THE LATTICE-BOLTZMANN METHOD

Basically, the time evolution of the lattice-Boltzmann model consists of a propagation
phase, where particles move along lattice bonds from a lattice node to one of its neighbors,
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and a collision phase with a local redistribution of the particle densities subject to conser-
vation of mass and momentum. The simplest and currently widely used lattice-Boltzmann
model is the so-called lattice-BGK (Bhatnagar–Gross–Krook) model. Here the collision
operator is based on a single-time relaxation to the local equilibrium distribution [2, 9].

In the literature different formulations of the lattice-BGK model can be found. The dif-
ferences lie, e.g., in the connectivity of the lattice used. In two dimensions 7 or 9 links per
lattice point (theD2Q7 andD2Q9 models, respectively) are frequently used, while in three
dimensions 15 or 19 links per lattice point (theD3Q15 andD3Q19 models, respectively) are
regularly used, in addition to models without rest particles (theD3Q14 andD3Q18 models).
In this paper theD2Q9 model is used in the two-dimensional simulations, whereas in three
dimensions theD3Q15 and theD3Q19 models will be considered. In theD2Q9 model each
lattice point is connected to its eight nearest and diagonal neighbors. In theD3Q19 model
each lattice point is connected to its six nearest and twelve diagonal neighbors at a distance of√

2, while in theD3Q15 model each lattice point is connected to its six nearest and eight diag-
onal neighbors at a distance of

√
3 (see Fig. 6). Rest particles are included in all three models.

The time evolution of the lattice-BGK model is given by [9]

fi (r + ci , t + 1) = fi (r , t)+ 1

τ

(
f (0)i (r , t)− fi (r , t)

)
, (1)

whereci is the ith link (bond),fi (r , t) is the density of particles moving in theci direction,
τ is the BGK relaxation parameter, andf (0)i (r , t) is the equilibrium distribution function
towards which the particle population is relaxed. The hydrodynamic fields, such as the
densityρ and the velocityv, are obtained from moments of the discrete velocity distribution
fi (r , t),

ρ(r , t) =
N∑

i=0

fi (r , t) and v(r , t) =
∑N

i=0 fi (r , t)ci

ρ(r , t)
, (2)

whereN is the number of links per lattice point.
The equilibrium distribution function can be chosen in many ways. A common choice is

[9]

f (0)i = tiρ

(
1+ 1

c2
s

(ci · v)+ 1

2c4
s

(ci · v)2− 1

2c2
s

v2

)
, (3)

whereti is a weight factor depending on the length of the vectorci , andcs is the speed of
sound. For the weight factors used in the different models see Table I.

TABLE I

The Coefficientsti in the Equilibrium Distribution Function f (0)
i

for the Different Lattice-BGK Models [9, 29]

Model 0 I II III

D2Q9
4
9

1
9

1
36

0

D3Q15
2
9

1
9

0 1
72

D3Q19
1
3

1
18

1
36

0

Note.A 0 indicates a rest particle, I is for links pointing to the nearest neigh-
bors, II is for the links pointing to the next-nearest neighbors, and III is for the
next-next-nearest neighbors.
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The lattice-Boltzmann models presented here yield the correct hydrodynamic behavior
for an incompressible fluid in the limit of low Mach and Knudsen numbers [9]. The kinematic
viscosity of the simulated fluidν and the speed of soundcs expressed in lattice units are
ν= τ−1/2

3 andcs=
√
(1/3) [9]. The fluid pressurep(r , t) is given by

p(r , t) = c2
s(ρ(r , t)− ρ̄), (4)

where ¯ρ is the mean density of the fluid.

III. THE BOUNDARY CONDITIONS

The numerical quality of lattice-Boltzmann simulations is determined by the following
error sources:

(1) Finite-size effects due to an insufficient number of lattice points compared to
the mean free path of the fluid particles. These, Knudsen-like effects, depend on both the
relaxation parameter (controls the mean free path) and the lattice resolution [27].

(2) Compressibility errors. Compressibility effects are caused by the fact that in the
lattice-Boltzmann method small fluctuations in the density are associated with variations
in pressure. The compressibility error is small for low Mach numbers [29].

(3) Boundary effects. In principle, the truncation error of the lattice-Boltzmann method
is second-order in space. However, the accuracy of the solution depends on the boundary
conditions and is found to be only first-order in many cases [15–17, 19, 27]. Understanding
the effect of the boundary conditions is very important since they are crucial in many fluid-
dynamical simulations. In this section we will study boundary conditions for two common
cases, namely the bounce-back boundary condition at a solid wall and the body force, which
is often used as a substitute to pressure boundaries.

A. The Bounce-Back Boundary Condition

The bounce-back boundary rule is the simplest way to impose solid walls in lattice-
Boltzmann simulations. Here, particles that meet a wall point are simply bounced back
with a reversed velocity. It is obvious that this rule leads to a non-slip boundary located
somewhere betweenthe wall nodes and the adjacent fluid nodes (in the literature this effect
is known as the shift of the boundary). More sophisticated boundaries, which model a non-
slip boundary exactly at the wall node (the so-called second-order boundaries), have been
proposed by several authors [15–19, 27, 20]. Unfortunately most of them are restricted to
regular geometries (like flat walls and octagonal objects) [15–17]. For practical simulations
the bounce-back boundary is very attractive because it is a simple and computationally
efficient method for imposing non-slip walls with irregular geometries.

Most previous studies of bounce-back have considered only flat walls, although a few
more detailed studies have also been published. Recently, an evaluation of the bounce-back
method has been reported where the solutions obtained with the bounce-back rule were
compared with those obtained with the finite-difference method for flow around octagonal
and circular objects [30]. In this analysis the location of the non-slip boundary was thus
taken to be at the wall node itself and the error in the solution was first-order convergent in
space. Here we will study the behavior of the bounce-back boundary for a similar staggered
geometry. Beside the standard analysis, where the location of the non-slip boundary is
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FIG. 1. The inclined tube flow experiment for an inclination angle of 45 degrees. On the left the computational
grid is shown and on the right the location of the wall.

assumed to be at the wall node, our benchmark problem enables us to study the shift of the
boundary for a specific staircase geometry, as will be shown in the following.

We chose the simple Poiseulle flow in a tilted channel as our benchmark problem. In this
case the analytical solution for the velocity profile is known, and the effect of the bounce-
back rule in a staircase boundary can be investigated by simulating fluid flow through an
inclined tube (see Fig. 1a). The analytical solution for this problem (in lattice units) is given
by

u j = u0 ∗
(

1− j 2

l 2

)
, (5)

whereu j is the component of the velocity vector along the flow direction at a distancej
from the center of the tube,l is the radius of the tube, andu0 is the maximum velocity [11].
The absolute and relative errors at locationj, εabs

j , andεrel
j , respectively, are defined as

εabs
j = |u j − ū j |, εrel

j =
∣∣∣∣u j − ū j

u j

∣∣∣∣, (6)

whereū j is the simulated velocity at locationj .
Periodic boundaries were imposed at the inlet and outlet of the tube, and a constant body

force was used to drive the flow (i.e., a fixed amount of momentumq was added at every
time step on each lattice point). The body force was directed along the flow direction, and
periodic boundaries were implemented by taking into account the translation of the inlet
and outlet in the vertical direction. The walls were modeled by the bounce-back boundary
rule.

The mean relative error as a function of lattice spacing is shown in Fig. 2 for the standard
bounce-back analysis. In this figure we have included the results for the inclination angle
α= 0, 15, 30, and 45 degrees. A first-order convergence of the mean relative error is found
in all cases (a fit to the data points gives a slope of−0.9). Furthermore, the error for the
staircase geometries is on the average 50% higher than for the flat walls. The relative error
close to the boundary nodes (very small velocities) is significantly higher than along the
center of the tube. For staircase geometries, there is no clear dependence of the relative
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FIG. 2. The mean-relative error in the inclined-tube flow simulations (angles 0, 15, 30, and 45 degrees) for
the standard bounce-back analysis. Tube diameter is 10, 20, 30, and 40 lattice-points,v0= 0.01, andτ = 1.0. The
length of the tube is 40 lattice-points.

error on the inclination angle, because the differences between the relative error forα= 15,
30, and 45 degrees are smaller than the fluctuations in the error along the tube. Moreover
our results are of the same order as those of Gallivanet al. [30] for flow around octagonal
cylinders when similar error metrics are used (data not shown).

As discussed previously, the accuracy of the simulation is determined by the location of
the non-slip wall. For tube flow in flat geometries, it has been shown both numerically and
analytically, that when the non-slip boundary is assumed to be in the middle of the first wall
and the last fluid node, the error is second-order convergent [24]. In this case the analytic
expression for the absolute error caused by the bounce-back boundary condition is given
by [24]

u j − ū j = −u0(4τ(4τ − 5)+ 3)

3(2l − 1)2
. (7)

Notice that, according to Eq. (7), this “half-way shifted” wall is quite an accurate boundary
condition for practical values of the relaxation parameter [24]. Furthermore, the error,
u j−ū j = 0, when the relaxation parameter isτ = 1.07. We have found very good agreement
between our simulations and Eq. (7) (data now shown).

As a final case, we have studied whether such a shift of the boundary can be seen in
staircase geometries, by determining the error behavior as a function of the lattice dimen-
sions and the relaxation parameter. We have restricted our analysis to an inclination angle
of 45 degrees. The “half-way shifted” location of the wall is expected to differ somewhat



488 KANDHAI ET AL.

FIG. 3. (a) The mean-relative error on lattices withN= 7, 13, 25, and 50 lattice points. Square (slope of
the line is−2.0) and stars (slope is−1.9) are the half-way shifted results for flat and 45 degrees inclined tube,
respectively,v0≈ 0.01, andτ = 1.0. The length of the tube is 40 lattice-points. (b) The mean-relative error as a
function ofτ for N= 25 andv0= 0.1. The length of the tube is 40 lattice-points.

from that of a flat tube. In Fig. 1b we show the “half-way shifted” location of the wall.
The staircase geometry is staggered between two straight lines (lines through the type-P
and type-Q points in Fig. 1b). Therefore, the “half-way shifted” boundary is also staggered
between two straight lines (dashed lines in Fig. 1b). The location of the boundary is taken
as the average of these two lines (see the thick solid line in Fig. 1b).

The mean relative error as a function of lattice spacing is shown in Fig. 3a. In this figure
we have included two curves, namely the results for the flat tube and the inclined tube
experiment, where for both cases the wall is placed at the “half-way shifted” location. For
both cases the error is second-order convergent (a fit to the data points gives an approximate
convergence of−1.9). Furthermore, we clearly see that the mean relative error for the flat
tube is somewhat smaller than that for the inclined tube. In Fig. 3b the error as a function of
the relaxation parameter is shown. A qualitatively similar error behavior for the inclined-
and flat-tube flow (Eq. (7)) is found. For an increasing relaxation parameter, the error first
decreases and subsequently increases after some optimal value of the relaxation parameter.
Here we observe that, for practical values of the relaxation parameter, the “half-way shifted”
boundary is quite accurate. The optimal relaxation parameter in this case is approximately
1.55.

We have seen that the error due to staircased structure is on the average 50% higher than
for flat geometries. For a specific case (α= 45 degrees), we have verified that the bounce-
back boundary rule tends to generate an imaginary boundary, which is located between
the last fluid node and the solid wall. For the general case it is expected that the exact
location of the boundary will depend on the relaxation parameter and the geometry of the
problem. We think that it is very difficult to predict the location of the non-slip wall for
arbitrary geometries. For geometries with finite curvatures, e.g., for spherical particles, we
have found that the difference between the hydrodynamic radius and the actual radius is
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quite small when the relaxation parameter is taken to be 0.7≤ τ ≤ 1.3, and the particle
radius is expressed in the units of half lattice spacing (cf. Section 4). Also, we have recently
performed a detailed comparison between the lattice-Boltzmann method, the Finite Element
method, and experimental data for fluid flow in a complex 3D chemical mixing reactor [32].
The geometry of the reactor consisted of a number of solid tubes in different orientations
and locations and was such that it promoted mixing of fluid flowing through it. The results
of the lattice-Boltzmann simulations were quite satisfactory even on moderate lattices.
Supported by these results, we thus conclude that in irregular geometries the bounce-back
boundary is certainly very useful despite its simplicity. In some applications, however,
sufficient accuracy may only be obtained on large lattices. In such cases, the accuracy can
be increased by locally refining the grid in the vicinity of solid walls.

B. Comparison between Body Force and Pressure Boundaries

Successful numerical simulation of practical fluid-flow problems requires that the velocity
and pressure boundary conditions have been set in a consistent way. However, general ve-
locity and pressure boundaries are still under further development for the lattice-Boltzmann
method [3, 10, 12, 13, 15–17, 19, 27, 34–36]. So far practical simulations have usually
included first-order velocity boundaries [29, 37], and a body force [3, 25, 31, 39] has often
been used instead of pressure boundaries in problems with a periodic geometry.

Consider, e.g., fluid flow through an infinite vertical array of cylinders, where pressure
is kept constant in vertical planes in front and beyond the cylinders (see Fig. 4). Here, the
use of body force instead of pressure boundaries is based on the assumption that the effect
of the external pressure force(p1− p2)L yex ≡ Qex is approximately constant everywhere
in the system. Provided that this indeed is the case, and that the densities at the inlet and
outlet surfaces are kept constant, pressure boundaries can be replaced with a global body
forceQex that gives rise to an accelerationgex of the fluid. Pressure fields are then obtained
from the effective pressurepeff, which is defined as

peff = c2
s1ρ − ρ̄gx, (8)

FIG. 4. One unit shell in a vertically infinite array of cylinders.Lx andL y are the length and the width of the
unit shell, andp1 and p2 are the fluid pressures at the inlet and outlet, respectively.
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wherex is the distance measured from the inlet of the system. Notice that, for a simple tube
flow, the body force approach is an accurate substitute to pressure boundaries in that, i.e.,
the velocity and pressure fields given by the two methods are identical.

In order to check the validity of the body-force approach, we simulated the system shown
in Fig. 4 with both the body force and the pressure boundaries. The simulation lattice was
Lx × L y= 300× 100 lattice points, the cylinder radiusa0 was 5.5 lattice points, the center
of the cylinder was located 100 lattice points from the inlet, and periodic boundaries were
used in the y direction. The cylinder Reynolds number, Re= 2a0U/ν, was varied between
0 and 6 by adjusting the LBGK relaxation parameterτ between 0.6 and 2.0.

In the body-force simulations periodic boundaries were used also in the x direction.
Density, and thus effective pressure, were kept constant at the inlet and outlet. The fluid
momentum was also kept constant to prevent the cylinders from seeing their periodic images
in the x direction. This was done as follows: after the propagation step the average fluid
densitiesρin andρout, and the average velocitiesvin=Pin/ρin andvout=Pout/ρout, were
first calculated at the inlet and outlet, respectively. (HerePin andPout are the corresponding
total fluid momenta.) Then the particle densitiesfi at the inlet and outlet were set to
fi,in= f (0)i (ρin, vin) and fi,out= f (0)i (ρout, vout), respectively.

Pressure boundaries were implemented by the method described in Ref. [27]. Because
in both cases velocity and pressure can develop freely, and the channel is big compared
with the size of the cylinder (some preliminary finite-size simulations were performed
as a verification), the conditions close to the cylinders are very similar in both simula-
tions.

Notice that, when the system is fully saturated, the drag force acting on the obstacle
completely cancels the effect of pressure or body force. So, if the pressure boundary of
Ref. [27] is accurate, the two different methods should give equal drag forces, although the
simulated velocity and pressure fields may be different.

In Table II we show for different Reynolds numbers the relative difference in the velocity,
pressure, and the drag forces acting on the particle, between the pressure boundary and the
body force simulations. The difference is calculated in a box of 60× 50 lattice spacings
around the obstacle. The relative error in the velocity,εv is defined asεv = (vp − vb)/vp,
wherevp andvb are the velocities of the pressure boundary and body force simulations,
respectively, and the relative error in the pressure is defined as

εp = (δp− δpeff)/δp12, (9)

TABLE II

The Mean and Maximum Relative Error in the Velocity, εv, Pressure,εp,

and the Drag Forces Acting on the Particle,εdrag, between Pressure Boundary

and Body Force Simulations for Different Reynolds Numbers

Re 0 0.05 0.4 2 3 6

Meanεv 0.33 0.34 0.33 0.34 1.36 2.2
Max εv 0.81 0.96 0.79 0.86 2.35 62
Meanεp 0.24 0.24 0.27 0.46 1.9 3.94
Max εp 0.97 0.90 0.92 1.92 6.2 14.1
εdrag 1.2 · 10−8 8 · 10−4 7.3 · 10−3 7.7 · 10−2 1.1 2.6

Note.The numbers are expressed in percentages.
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FIG. 5. Comparison of relative error of velocity (a) and pressure (b) for body force and pressure boundaries.
The numbers are expressed in 1/1000 in both cases. The flow is from left to right.

whereδp= pin − p andδpeff= peff,in−peff are the pressure differences between the inlet
and a point(x, y) for the pressure boundary and body force simulations, respectively. We
choseδp12= p1 − p2 as the reference scale instead ofδp, because on many lattice points
δp was very close to zero. We clearly see that for Re≤ 2 the mean relative difference in
pressure and velocity is less than 1%. For higher Reynolds numbers bigger differences are
found. These are probably caused by problems related to the pressure boundary conditions,
because the drag in the pressure boundary simulations was not in good agreement with the
expected value, in contrast with the results of the body-force simulations.

In Fig. 5a we show the contour plot of the relative errorεv for Re= 0.4. The pressure
boundary simulations regularly gave a little smaller velocities, the average error being
|εv|ave= 0.33%. The biggest differences in the velocities, namely 0.79% and−0.74%,
were found at the up-stream and down-stream stagnation points, respectively. The contour
plot of εp is shown in Fig. 5b. Its average value was|εp|ave= 0.27%. The maximum and
minimum values forεp, namely 0.87% and−0.92%, are once again found at the stagnation
points.

In addition to this benchmark, we studied a more complicated case, namely fluid flow
in a disordered porous medium composed of nonoverlapping cylinders. The radii of the
cylinders werea0= 5.5 lattice spacings, the porosity of the medium was 0.8, andτ = 1.0.
The lattice dimensions wereLx × L y= 500× 100, and the porous medium was placed at a
distance of 200 lattice spacings from the inlet and outlet. The obstacle Reynolds numbers
were on average 0.003. The difference in the total drag given by the pressure boundary and
body-force simulations was quite high, namely 4%. The average relative errors|εv|ave and
|εp|ave in the velocity and pressure fields were 4.2 and 2.2%, respectively, and the maximum
errors of|εv| and|εp| were 28 and 4.3%. Thus, although the error in total drag was quite
big, the overall results were still quite satisfactory. In this paper we have used the drag force
acting on the particle as a reference. More detailed comparison of the complete velocity
and pressure profiles for body-force driven simulations with results of traditional methods
and experimental data of different problems for a wide range of Reynolds numbers can be
found in Refs. [32, 33].

We can conclude that, for small Reynolds numbers and simple geometries, the body-
force approach is quite an accurate substitute to pressure boundaries. However, for high
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Reynolds-number flows, where nonlinear effects are dominant, and for more complicated
geometries, more sophisticated pressure boundaries may still be needed.

IV. CHECKERBOARD EFFECT IN THE D3Q14 AND D3Q15 MODELS

The lattice-Boltzmann method was originally developed from the lattice-gas automata.
The first lattice used in 3D simulations was theD3Q19 lattice [1], which is a 3D projection
of the 4D FCHC lattice [3] used for 3D lattice-gas simulations (see Fig. 6a).

It was later realized that the relative freedom in choosing the lattice-Boltzmann equilib-
rium distribution function also gave some freedom in choosing the structure of the simula-
tion lattice. As a result, theD3Q15 model (see Fig. 6b) was developed [9]. TheD3Q14 and
D3Q18 models are obtained from theD3Q15 andD3Q19 models, respectively, by excluding
the rest particles. However, the presence of rest particles is often desirable for improving
the accuracy of the model [40]. Also, for a small relaxation timeτ , the rest particles may
be needed to stabilize the system [42]. Therefore, theD3Q15 andD3Q19 models are most
often used in practical simulations.

The computational and the memory requirements of the lattice-Boltzmann model scale
linearly with the number of fluid particles. TheD3Q14 andD3Q15 models are thus some-
what more efficient than theD3Q18 and D3Q19 models. However, in theD3Q14 and
D3Q15 models, checkerboard behavior in the fluid momentum can occur, i.e., fluid mo-
mentum may form unphysical regular patterns. We will demonstrate this below in the case
of saturation of a random velocity field and in the case of fluid flow around a spherical
obstacle.

Let us mark the lattice points(i, j, k) by black colour ifi + j + k is odd, and by white
colour otherwise, thus forming a checkerboard pattern shown in Fig. 6 for theD3Q19

andD3Q15 models. To each lattice-Boltzmann fluid particle, we also assign the colour of
the lattice point at which they reside in the beginning of the simulation. If there are no
obstacles in the system, it is easy to see that, in theD3Q14 model, the black and white
particle populations are completely independent of each other: the colour of the lattice
point at which a given fluid particle resides changes at every time step (see Fig. 6b). As a

FIG. 6. Lattice structures ofD3Q19 andD3Q15 lattice-BGK models. The checkerboard coloring is included
in the figures. On the left theD3Q19 model is shown and on the right theD3Q15 model.
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consequence of this checkerboard effect, the total mass and momentum of the black and
white particle populations are spurious invariants, i.e., unphysical conserved quantities in the
D3Q14 model. Similar spurious invariants are also found in the HPP lattice-gas model [28].
These invariants can create unphysical hydrodynamic modes in the simulated system, and
for this reason they should be eliminated from the model [3]. Notice that, in theD3Q18

model, the black and white populations mix immediately with each other. Consequently,
there is no checkerboard effect in this model.

In theD3Q15 model the black and white populations are not entirely independent as they
are coupled through the rest particles. However, checkerboard effects may also here lead to
unphysical behavior. If the lattice is initialized with equilibrium distribution such that, e.g.,
the velocity is set toub at black lattice points and touw at the white lattice points, while|ub|
is equal to|uw|, it is easy to see that the total momenta of the black and white populations
will be conserved quantities.

We studied the checkerboard effect by following the relaxation of a perturbed velocity
field with a constant initial density and with periodic boundaries imposed in all directions.
We used two different lattices. In the first case the lattice dimensions were 10× 10× 10
lattice points. When a steady state was reached in theD3Q19 model, all components of
the particle momenta were found to oscillate at each lattice point between two values (see
Fig. 7a). Such oscillations are caused by the so-called staggered invariants [10]. They can
be removed with proper initial conditions, and their effect can also be filtered out by aver-
aging the momenta over two steps. After time averaging the momentum field was uniform,
as expected [10]. In theD3Q15 model, the fluid remained partially unmixed in the steady
state. After time averaging, two different values for the particle momenta were found in the
lattice (see Fig. 7b), and each component of momentum was constant along lines parallel
to the corresponding direction. The x component, e.g., was constant on lines parallel to the
x axis, and its distribution in the yz plane formed a checkerboard pattern. The relative dif-
ference between the two values of the momentum varied in the simulations, being typically
0.5–3%.

Similar simulations were also performed on a 9× 9× 9 lattice. In this case the two
populations had additional mixing on the boundaries of the lattice, as the colouring rule

FIG. 7. Relaxation of the x components of the momenta of two next-nearest neighbors in the xy plane on
a lattice of dimension 10× 10× 10. On the left the right we show the time evolution of theD3Q19 and D3Q15

models, respectively. The initial perturbed velocity field is the same in both models.
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FIG. 8. Relaxation of the x components of the momenta of two next-nearest neighbors in the xy plane on a
9× 9× 9 lattice. On the left and right we show the time evolution of theD3Q19 andD3Q15 models, respectively.

was not continuous due to the length of the lattice being an odd number. As a result, the
steady-state momentum field was uniform for both models even without time averaging,
i.e., both the staggered invariants and the checkerboard effect were eliminated in the end.
However, the weak coupling between the black and white populations in theD3Q15 model
was still apparent in the time evolution of the relaxation process. This can be seen in Fig. 8,
where relaxation of the momenta of two next-nearest neighbors is shown in one direction.
In theD3Q15 model the relaxation process is significantly slower, and there are long-lasting
oscillations in the local values of the momentum in this case.

We also studied the checkerboard effect in the presence of solid walls. The first test case
was fluid flow in a rectangular duct. The duct dimensions were 30× 30 lattice points,
the relaxation parameter wasτ = 1.0, and bounce-back at the nodes was used on the
solid walls. Periodic boundaries were used in the direction of flow driven by a body
force. In this case no checkerboard effect were seen, and the average relative difference
|1v| = |(vQ19 − vQ15)/vQ19| between the velocity fields given by theD3Q19 and D3Q15

models was only 0.34%. (A detailed duct-flow comparison between theD3Q18 andD3Q15

models has previously been reported in Ref. [27], where theD3Q18 model was found to be
more accurate in general, while the results given by theD3Q15 model were also found to
be satisfactory.)

The second test case was fluid flow around a sphere. The radius of the sphere wasa0= 5.5
lattice points. In the first simulation, the lattice consisted of 30× 30× 30 lattice points, and
the relaxation parameter wasτ = 1.0. Bounce-back condition was used on the solid walls,
and periodic boundaries were imposed in all directions. Flow was driven by a body force.
In this case, the checkerboard effect did not lead to momentum oscillations, but appeared
instead as unphysical patterns in the velocity and pressure fields. We have observed that
the velocity field of theD3Q15 model includes horizontal patterns which are not found
in the D3Q19 model. This kind of pattern is clearly seen in the values of1v shown in
Fig. 9a. Similar patterns were also seen in the values of1p (in this comparison1p was
calculated from Eq. (8)). In Fig. 9b, the velocity profile at the inlet boundary is shown for
the two models. It is evident that theD3Q19 model generates a very smooth profile, whereas
the D3Q15 model generates a profile staggered between two smooth curves. The average
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FIG. 9. The results for fluid flow around a sphere. The velocity field in a plane which bisects the sphere is
analyzed. Fluid is flowing from left to right, and periodic boundaries are used in both directions. (a) The relative
difference1v between the velocity fields obtained by theD3Q19 andD3Q15 models. The colours run from gray
to white with the scale−3.0%≤1v≤ 3.0%. (b) The velocity profile at the inlet for both models. The solid line
and open boxes show the results for theD3Q19 andD3Q15 models, respectively.

values of|1v|ave and |1p|ave were 2.5 and 3.9%, respectively. The difference between
the total momenta of the fluids was in steady state only 0.62%. For this reason, e.g., the
hydrodynamic radiia of the sphere (a detailed description of the determination ofa is found
in Ref. [10]) given by these models were very close to each other: theD3Q15 andD3Q19

models gavea= 5.50 anda= 5.52, respectively. We performed similar simulations with
bounce back on the links, and on a lattice of 31× 31× 31 lattice points. Similar patterns
were seen also in these two cases.

We thus conclude that, in theD3Q15 model, there is a checkerboard effect which may
appear in the hydrodynamic fields. In some cases the boundaries can suppress this unphysical
effect. Furthermore, it does not have significant effect on global values such as the average
fluid momentum. Therefore, in spite of its shortcomings, theD3Q15 model appears a viable
alternative for steady-state hydrodynamics.

As Fig. 8b shows, in dynamical systems (e.g., in fluid-particle suspensions or in turbulence
simulations) the checkerboard effect may slow down the relaxation of momentum and can,
in principle, produce unphysical effects in the dynamics of the system. Notice, however,
that the solid boundaries increase mixing also in theD3Q15 model in the case when bounce
back on the links is used at the boundaries.

V. THE ITERATIVE MOMENTUM RELAXATION (IMR) TECHNIQUE

In lattice-Boltzmann simulations, flow is often driven by a body force which is kept
constant during the simulation. Iteration is started with some initial velocity field. A steady-
state solution is finally reached when the total body forceQ acting on the fluid is completely
cancelled by the viscous friction forceT due to the walls and obstacles.

Fluid flow in random porous medium has been one important application of the lattice-
Boltzmann method [25, 39, 41]. For such media, simple dimensional analysis suggests that,
for a constant body force, the saturation timetsat needed to reach the steady state is of the
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form [18]

tsat∝ R2
pore/ν, (10)

whereRpore is the characteristic length of the void pores in the system, andν is the viscosity
of the fluid. For systems with high porosityφ, saturation times can therefore be very long. In
some cases, tens of thousands of time steps may be needed. It is thus evident that a constant
body force may be computationally inefficient, especially when one is only interested in
the steady-state solution. In standard computational fluid dynamics this problem can be
overcome by solving the time independent flow rather than the complete Navier–Stokes
equation.

In time-dependent flows, accurate initial conditions are needed [15], whereas in time-
independent flows properly chosen initial conditions may be used to speed up the saturation.
Such conditions may not be easily found. However, if essential dimensionless numbers, like
the Reynolds number, are kept constant, simulations may first be carried out either on a
smaller lattice or for a higher viscosity. In both cases the simulation time will be smaller
than in the original system. Due to discretization errors and finite size effects, the obtained
velocity and pressure fields may be quite inaccurate, but they can be used as good initial
guesses for the final simulation.

We will show that the saturation time can also be reduced by using an Iterative Momentum
Relaxation (IMR) technique, where the applied body force is adjusted during the iteration
depending on the change of fluid momentum at the iteration step considered.

In the beginning of an IMR simulation a flow is first initialized. After everytsteptime steps,
the following iterative procedure (wherek denotes the iteration counter of the IMR-loop)
is repeated:

(1) Calculate the momentum change(1P)k of the fluid phase in the direction of the
body force during the next time step.

(2) Calculate the average momentum lossTk= Qk− (1P)k (Qk is the total body
force at the iteration stepk) of the fluid due to the viscous forces during this time step.

(3) Choose a new body force asQk+1= Tk.

The new body forceQk+1 is let to accelerate the fluid duringtstep time steps before
proceeding from step (1). The simulation is carried out until the body forceQ reaches an
acceptable degree of convergence.

To validate the IMR technique we have applied it to three benchmark problems, namely
flow around a sphere, the permeability of a 3D random fibre network (see Ref. [25]), and
fluid flow in an SMRX static mixer reactor (see Ref. [32] for details). We have included the
last benchmark, as it is one of the very few cases of fluid flow in complex geometries with
well documented results from traditional numerical methods and experimental data. In all
these test cases we have usedtstep= 50. Tests with some other values oftstep did not show
significant improvements in the benefit gained by the IMR technique.

In our first benchmark the sphere radius wasa0= 5.5 lattice points and the lattice dimen-
sions were 100× 100× 100 lattice spacings. We performed simulations at two Reynolds
numbers, namely Re= 0 (Stokes flow) and Re= 1. In both cases the IMR method was
extremely efficient. One percent accuracy in the velocity and pressure fields was already
obtained after 5000 time steps, whereas the constant body-force method would have required
180,000 times steps (data not shown).
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FIG. 10. The time evolution of the web permeabilityk(t)/k(steady-state) when a constant body force (solid
line) or the IMR method (dashed line) is used. Permeabilityk(t) has been computed using the body force and total
fluid momentum at time stept .

In our second test case we computed the permeabilityk (a measure for the fluid con-
ductivity through a porous material) of a random fiber web. The permeability can be com-
puted from the expressionk= (φPνρ)/(mq) whereP is the total fluid momentum in the
direction of the body force,m is the total mass of the fluid,ρ is the fluid density, andq is
the body-force density in the fluid phase. In Fig. 10 we show the time evolution of the fluid
momentum in a 400× 400× 60 lattice with a porosity ofφ= 0.94, when a constant body
force (solid line) or the IMR method (dashed line) is used. It is evident that with the IMR
method an accuracy of 1% in the permeability (and thus also in the body forceQ) is reached
in 7000 time steps, while the constant body-force method requires more than 18,000 time
steps for reaching the same level of accuracy.

Our last test case was fluid flow in a static mixer reactor (cf. Section 2 and Fig. 11).
Here we have used as reference data the steady state solution of lattice-BGK simulations
with a constant body-force. For an element discretization of 56× 56× 56 lattice points,
1200 time steps were required to reach a stationary state whenτ = 1. In Ref. [32] we have
shown in detail that these results were in good agreement with Finite Element calcula-
tions and experimental data. With the IMR technique 1% accuracy in the velocity and the
pressure fields compared to our reference data, was already reached in 550 time steps,
whereas the constant body-force method required 1000 time steps to reach a similar ac-
curacy. In Fig. 12 we show the relative difference (in %) of the mean velocity, between
the results of the IMR technique and our reference data. The mean velocity is computed at
different cross-sections along the reactor after 500, 550, and 600 timesteps. The difference
is clearly less than 1%. Similar results were also found for the other Reynolds numbers
(by using a nonzero initial velocity field in the IMR technique) provided that the flow is
laminar.

We conclude that at least in problems involving laminar flow, the IMR method can be
very efficient in decreasing the number of time steps needed to reach the steady state. The
benefit seems to depend on the complexity of the flow geometry.
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FIG. 11. The SMRX static mixer element. The reactor consists of an SMRX element placed in a rectangular
duct. The inlet and outlet sections are of the same size as the element itself. The flow is from left to right.

FIG. 12. The relative difference (in %) of the mean velocity between the IMR technique and the steady state
solution obtained by the constant body-force approach (1200 timesteps were required). The mean velocity is com-
puted at different cross-sections along the reactor. The relative differences at 500, 550, and 600 timesteps are shown.
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VI. CONCLUSIONS

In this paper we have addressed various issues related to the lattice-BGK method which
are important from a practical point of view. We first discussed the effect of the bounce-
back boundary condition (which is widely used to model solid walls) for regular staircase
boundaries. It was found that the error for staircased geometries is on the average 50% higher
compared to that for flat walls. For a special case the bounce-back scheme was shown to be
second-order convergent when the non-slip boundary was taken in the middle of the solid
and adjacent fluid nodes. The quality of the method was determined by the compatibility
of the shifted walls (the so-called hydrodynamic geometry) and the real geometry.

In addition, we also considered boundaries which are responsible for driving a flow
between the inlet and outlet of the system. In this context we compared the well-known
body-force approach with pressure boundaries. For low Reynolds numbers and simple
geometries good agreement between these approaches was found.

Apart from the evaluation of the boundary conditions, we studied two common imple-
mentations of the lattice-Boltzmann model in 3D simulations. It was shown that within the
D3Q15 model, an unphysical checkerboard effect can be found, which generates spurious
conservations of momentum and mass of two distinct populations of particles. For some
stationary flows, this unphysical effect generates unphysical patterns in the hydrodynamic
fields. The overall macroscopic behavior still seemed to be satisfactory.

Finally, we presented a new method for reducing the number of time steps that is needed to
reach the steady state for body-force driven flows. In many lattice-Boltzmann simulations,
the complete time evolution of the system is computed with a constant body force starting
from some initial velocity and pressure fields. The number of time steps which is required
to reach the steady state can then be very large for systems with a small solid fraction. By
using the new Iterative Momentum Relaxation (IMR) scheme, the saturation time can be
significantly reduced.
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